A Pathology of Bottom-Up Hill-Climbing in Inductive Rule Learning

نویسنده

  • Johannes Fürnkranz
چکیده

In this paper, we close the gap between the simple and straight-forward implementations of top-down hill-climbing that can be found in the literature, and the comparably complex strategies for greedy bottom-up generalization. Our main result is that the simple bottom-up counterpart to the top-down hill-climbing algorithm is unable to learn in domains with comparably dispersed examples. In particular, we show that greedy generalization from a seed example is impossible if it differs from its nearest neighbor in more than one attribute value. We also perform an empirical study of how frequent this case is in popular benchmark datasets, and present average-case and worst-case results for binary domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Hill-Climbing and Exhaustive Search in Inductive Rule Learning An Empirical Comparison of Hill-Climbing and Exhaustive Search in Inductive Rule Learning

Most commonly used inductive rule learning algorithms employ a hill-climbing search, whereas local pattern discovery algorithms employ exhaustive search. In this paper, we evaluate the spectrum of different search strategies to see whether separate-and-conquer rule learning algorithms are able to gain performance in terms of predictive accuracy or theory size by using more powerful search strat...

متن کامل

Mode Directed Path Finding

Learning from multi-relational domains has gained increasing attention over the past few years. Inductive logic programming (ILP) systems, which often rely on hill-climbing heuristics in learning first-order concepts, have been a dominating force in the area of multi-relational concept learning. However, hill-climbing heuristics are susceptible to local maxima and plateaus. In this paper, we sh...

متن کامل

A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning

Most commonly used inductive rule learning algorithms employ a hill-climbing search, whereas local pattern discovery algorithms employ exhaustive search. In this paper, we evaluate the spectrum of different search strategies to see whether separate-and-conquer rule learning algorithms are able to gain performance in terms of predictive accuracy or theory size by using more powerful search strat...

متن کامل

Inductive Learning For Abductive Diagnosis

A new inductive learning system, Lab (Learning for ABduction), is presented which acquires abductive rules from a set of training examples. The goal is to nd a small knowledge base which, when used abductively, diagnoses the training examples correctly and generalizes well to unseen examples. This contrasts with past systems that inductively learn rules that are used deductively. Each training ...

متن کامل

An experimental study about the search mechanism in the SLAVE learning algorithm: Hill-climbing methods versus genetic algorithms

One of the basic elements in the development of the AI system is the search mechanism. The choice of the search method can determine the goodness of the developed system. In concrete, in the learning algorithms, the search mechanisms play a very important role. SLAVE is an inductive learning algorithm that describes the behavior of a system by a fuzzy rule set being a genetic algorithm of its s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002